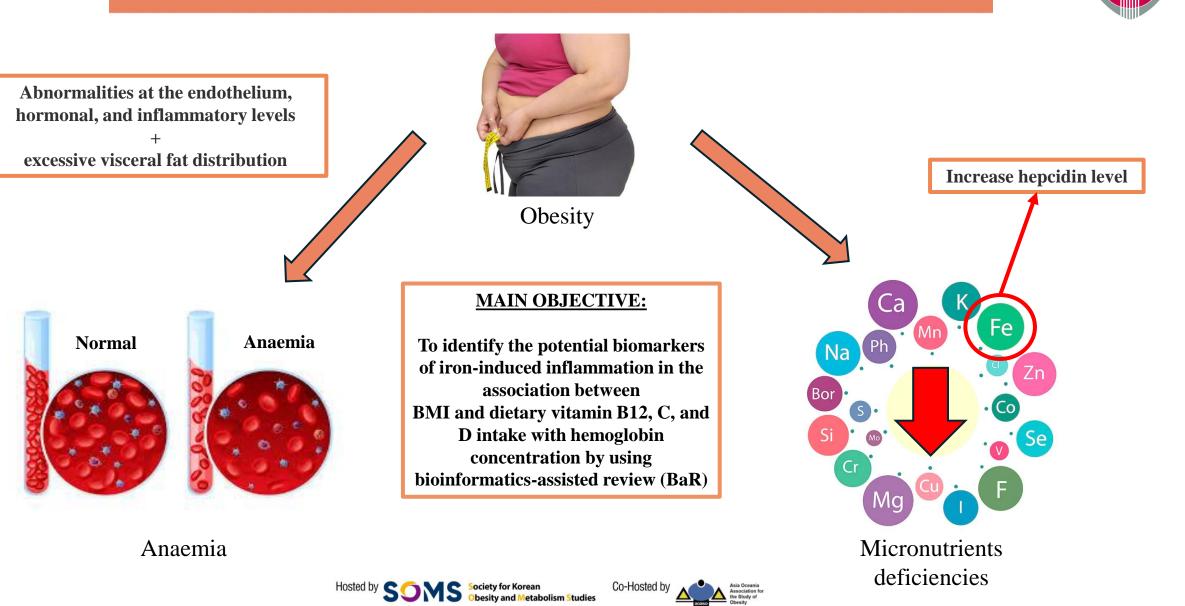


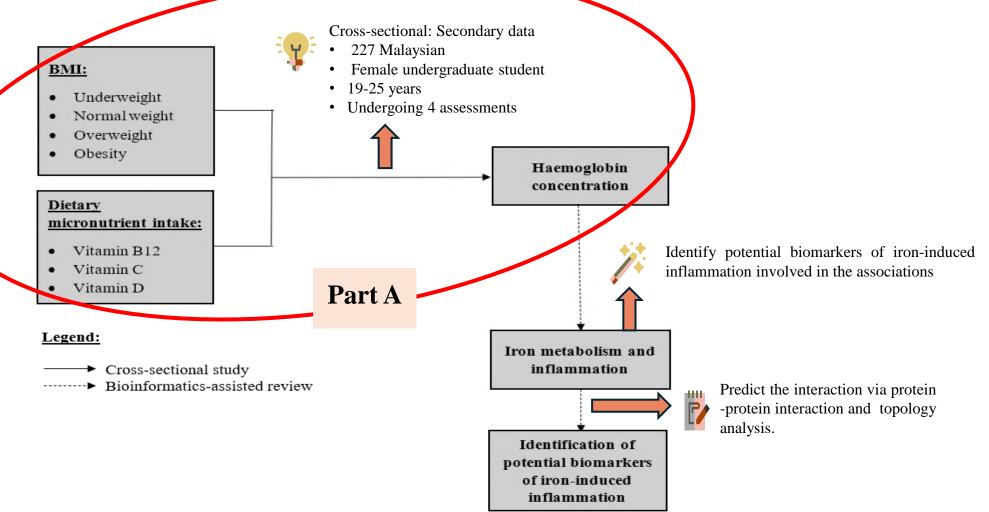
Identifying potential biomarkers of iron-induced inflammation in the association between body mass index (BMI) and selected micronutrients with haemoglobin concentration: A bioinformatics-assisted review (BaR) nutrition study

by FATIN NATASHA SYAHIRAH BINTI AHMAD RADZUAN

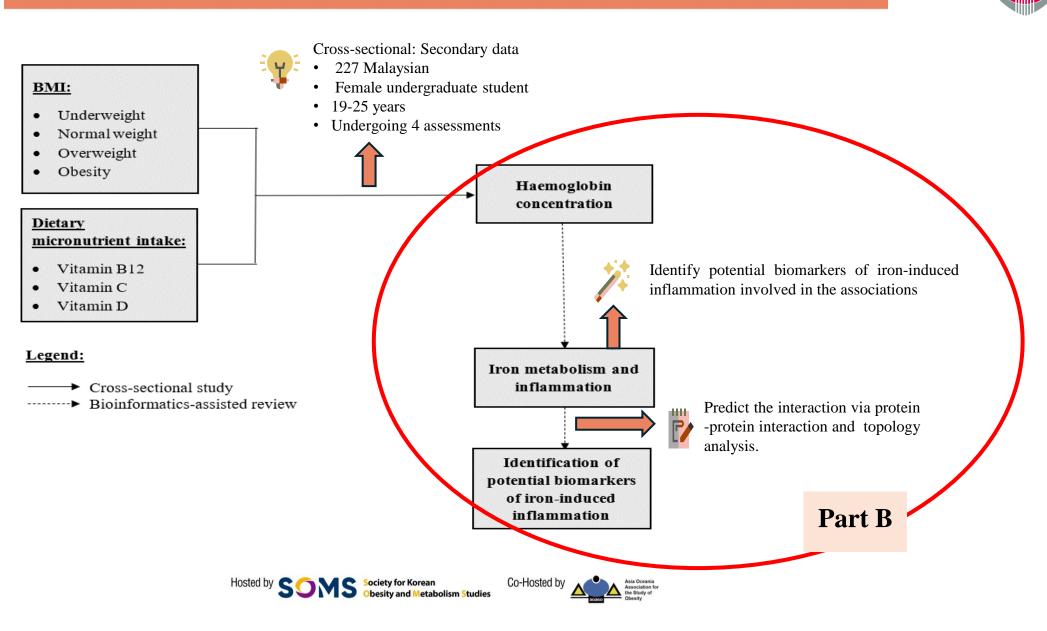

Postgraduate Student Master In Nutritional Sciences Universiti Putra Malysia, UPM

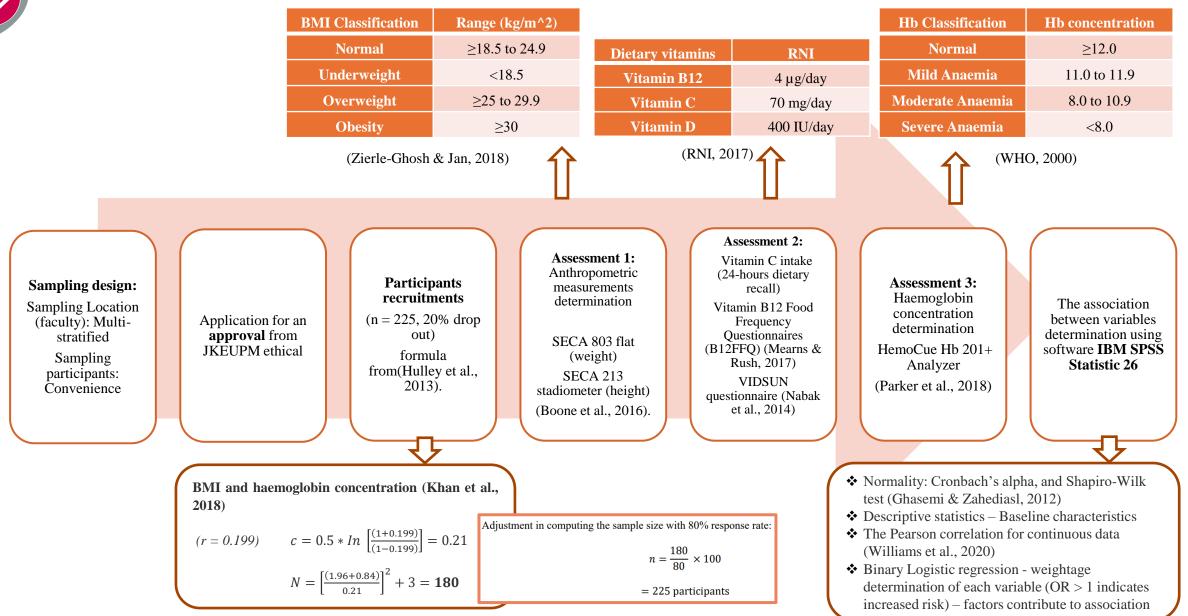
SOMS International Conference on Chesity & Wetabolism in conjunction with Asia-Oceania Conference on Obesity


Introduction



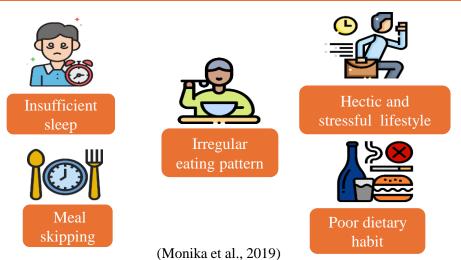
80MS International Conference on Obesity & Wetabolism in conjunction with Asia-Oceania Conference on Obesity


SOMS International Conference on Obesity & Metabolism in conjunction with Asia-Oceania Conference on Obesity



80MS International Conference on Obesity & Wetabolism in conjunction with Asia-Eceania Conference on Obesity

Part A: BMI and selected micronutrients with haemoglobin concentration



Results for Part A: Baseline characteristics of the participants (n=227)

Variables	n	%	Mean <u>+</u> SD
Haemoglobin concentration (g/dL)			11.57 ± 1.45
Anaemia	138	60.8	
Mild	75	33.0	
Moderate	58	25.6	
Severe	5	2.2	
Non anaemia	89	39.2	
Body mass index (BMI) (kg/m ²)			23.20 <u>+</u> 5.54
Normal	117	51.5	
Underweight	43	18.9	
Overweight	39	17.2	
Obese	28	12.3	

Based on WHO classification (WHO, 2020), if the percentage of anaemia in target population is higher than 40.0%, considered as severe health problem that maybe cause to:

Variables	n	%	Mean <u>+</u> SD
Vitamin B12 intake per day (µg)			5.37 <u>+</u> 7.91
Adequate (≥4)	99	43.6	_
Inadequate (<4)	128	56.4	
Vitamin C intake per day (mg)			29.31 ± 45.12
Adequate (≥70)	24	10.6	
Inadequate (<70)	203	89.4	
Vitamin D intake per day			
Milk servings (cup/day)			0.54 ± 0.72
0-2	223	98.2	
3 - 4	4	1.8	
Fish oil/fish (servings/week)			0.29 <u>+</u> 0.77
0-2	221	97.4	
3 - 4	5	2.2	
≥5	1	0.4	
Vitamin D supplementation per day (IU)			0.01 <u>+</u> 0.94
Adequate ≥ 400	2	0.9	
Inadequate < 400	225	99.1	

This study revealed that most of the participant have inadequate in al 1 micronutrients studied which due to poor dietary choices that beco ming a factor contribute to the prevalence of anaemia.

Results for Part A: Correlation between anthropometric measurement and BMI, selected vitamin intakes with haemoglobin concentration by using Pearson correlation test

r	p-value
0.103	0.120
0.137*	0.039
0.118	0.077
-0.103	0.121
-0.086	0.197
0.013	0.845
-0.007	0.913
0.011	0.865
	0.103 0.137* 0.118 -0.103 -0.086 0.013 -0.007

*Correlation is significant at the 0.05 level (2-tailed). r, correlation coefficient.

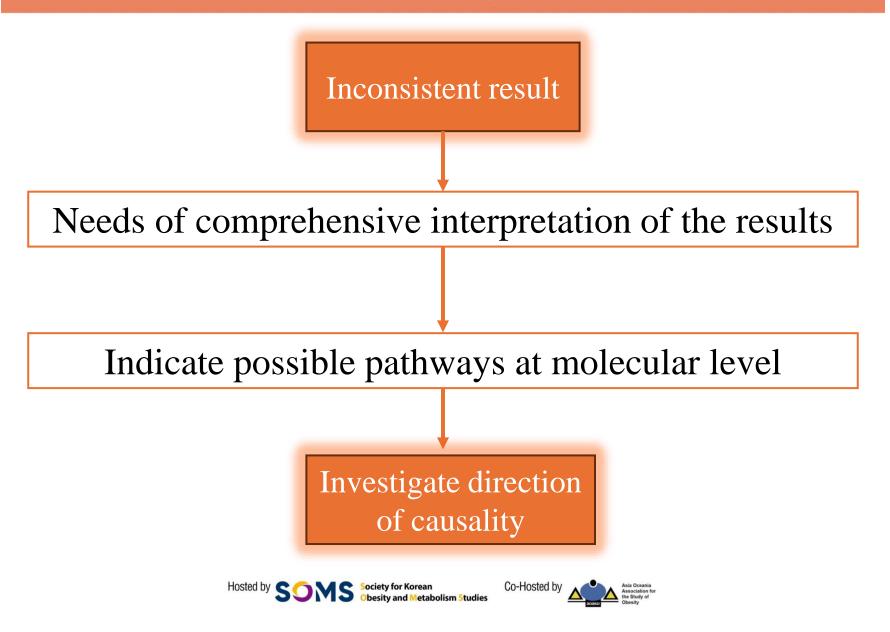
- 1. There is **no significant association** between BMI and the intake selected micronutrient with haemoglobin concentration.
- 2. A <u>significant linear association</u> was observed, between weight and haemoglobin concentration (r=0.137, p=0.039).

Haemoglobin is blood biomarker to represent anaemia, which generally affected only at final stage of iron deficiency.

Early and indirect changes in iron homeostasis from inadequate nutrient intake from diet, may not be readily observable.

(Chaparro & Suchdev, 2019).

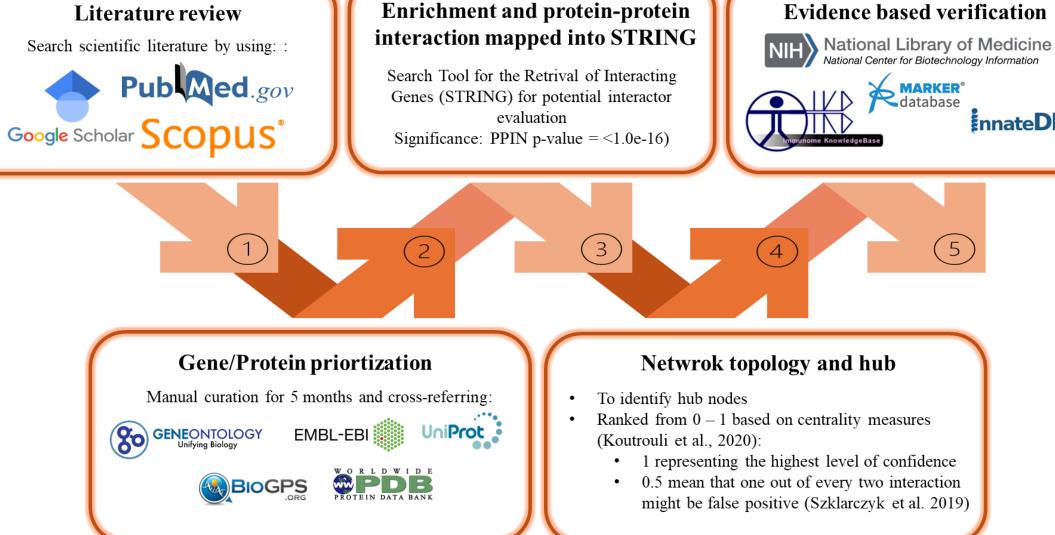
Also influenced by other cofounder such as inflammation that is not assessed.

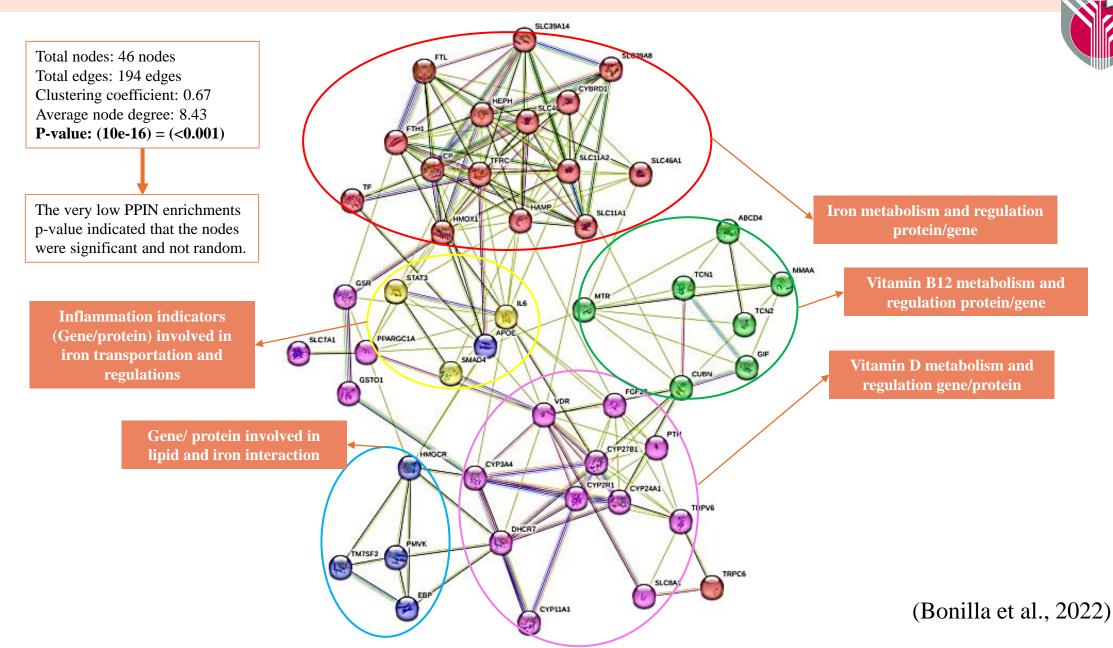

(Bagni et al., 2013)

Results for Part A: Prediction of selected micronutrients and BMI in contributing to anaemia by logistic regression UPM

Ind	licators	P- value	Odds ratio (OR)	95% C Lower	I for OR	
BMI	Underweight Normal Overweight	0 382 0.018*	1.533 2.772	0.588 1.194	Upper 4 000 6.437	Overweight participants significantly contributed to anaemia 2.772 times more compared to others BMI category
/itamin B12	Obese Adequate (≥ 4)	0.133	2.133	0.794	5.730	(OR=2.772, 95% CI 1.194-6.437, p=0.018)
ntakes er day (μg) ⁄itamin C	Inadequate (≪4) Adequate (≥70)	0.619	0.872	0.509	1.495	
ntakes per day mg)	Inadequate (<70)	0.856	1.084	0.453	2.595	Un Un and a la him and and in the second har and a fat meneration.
7itamin D ntakes	Milk servings (cup/s) (0 -2) (3-4)	0.564	0.511	0.052	4.995	 Haemoglobin concentration influenced by muscle mass, body fat percentage, overall body size, and can vary among individuals with the same weight but different heights Mechanism of action:
	Fish oil/fish (servings/week) 0 - 2 3 - 4 <u>></u> 5	1.000 1.000	<0.001 <0.001	<0.001 <0.001		 Increase BMI→ increased body composition, adiposity, inflammation, organ size → disrupt physiological body function Example: Increased adiposity → increase Vitamin D stored → lower
	Vitamin D supplementation per day (IU) Adequate ≥ 400 Inadequate < 400	0.755	1.557	0.096	25.213	 vitamin D bioavailability and distribution Obesity associated with poor dietary habit → lower water-soluble vitamin (Vitamin C and B12) Increased cholesterol, TGA and FFA → Impact protein-bound
p-value <0.05. Dependent variable: Haemoglobin classification (Normal and naemia). CI, Confidence interval; OR, Odd ratio.						micronutrients distribution (Guardiola-Márquez et al., 2022; Lapik et al., 2020).

80MS International Conference on Clesity & Wetabolism in conjunction with Asia-Oceania Conference on Obesity




Part B: Bioinformatics-assisted review (BaR)

(Bonilla et al., 2022)

Results for Part B: Analysis of protein-protein interaction (PPIN) for potential biomarkers of iron-induced inflammation identification

GO-term	Biological Process (GO)	FDR p-value
	Descriptions	
GO:0042369	Vitamin D catabolic process	4.35 x 10 ⁻⁵
GO:0010980	Positive regulation of vitamin D 24-hydroxylase	4.35 x 10 ⁻⁰⁵
GO:0006876	activity	0.00034
GO:0036378	Cellular cadmium ion homeostasis	7.11 x 10 ⁻⁵
GO:0006824	Calcitriol biosynthetic process from calciol	2.03 x 10 ⁻⁸
	Cobalt ion transport	
GO-term	Molecular Function (GO)	FDR p-value
	Descriptions	
GO:0015086	Cadmium ion transmembrane transporter activity	1.29 X 10-6
GO:0070643	Vitamin D 25-hydroxylase activity	0.00014
GO:0015093	Ferrous iron transmembrane transporter activity	0.00014
GO:1902271	D3 vitamins binding	0.0060
GO:0070576	Vitamin D 24-hydroxylase activity	0.0060
GO-term	Cellular Components	FDR p-value
	Description	
GO:0008043	Intracellular ferritin complex	0.0051
GO:1990712	HFE-transferrin receptor complex	0.0171
GO:0031232	Extrinsic component of the external side of the plasma	0.0171
GO:0044754	membrane	0.0225
GO:0031526	O:0031526 Autolysosome	
	Brush border membrane	
Pathway ID	KEGG Pathways	FDR p-value
1 attivity 10	Descriptions	1 Drep vinde
		4.20 10.9
hsa00100	Steroid biosynthesis	4.39 x 10 ⁻⁹
hsa00100 hsa04216	Steroid biosynthesis Ferroptosis	4.39 x 10 ⁻⁹ 7.07 x 10 ⁻¹⁵
	Ferroptosis	
hsa04216	•	7.07 x 10 ⁻¹⁵
hsa04216 hsa04978	Ferroptosis Mineral absorption	7.07 x 10 ⁻¹⁵ 4.42 x 10 ⁻¹⁷
hsa04216 hsa04978 hsa04977	Ferroptosis Mineral absorption Vitamin digestion and absorption Terpenoid backbone biosynthesis Protein Domain (PFAM)	7.07 x 10 ⁻¹⁵ 4.42 x 10 ⁻¹⁷ 5.65 x 10 ⁻⁵
hsa04216 hsa04978 hsa04977 hsa00900	Ferroptosis Mineral absorption Vitamin digestion and absorption Terpenoid backbone biosynthesis	7.07 x 10 ⁻¹⁵ 4.42 x 10 ⁻¹⁷ 5.65 x 10 ⁻⁵ 0.0498
hsa04216 hsa04978 hsa04977 hsa00900	Ferroptosis Mineral absorption Vitamin digestion and absorption Terpenoid backbone biosynthesis Protein Domain (PFAM) Descriptions Cytochrome P450	7.07 x 10 ⁻¹⁵ 4.42 x 10 ⁻¹⁷ 5.65 x 10 ⁻⁵ 0.0498
hsa04216 hsa04978 hsa04977 hsa00900 Domain	Ferroptosis Mineral absorption Vitamin digestion and absorption Terpenoid backbone biosynthesis Protein Domain (PFAM) Descriptions Cytochrome P450 The domain of the unknown function (DUF4430)	7.07 x 10 ⁻¹⁵ 4.42 x 10 ⁻¹⁷ 5.65 x 10 ⁻⁵ 0.0498 FDR <i>p</i> -value
hsa04216 hsa04978 hsa04977 hsa00900 Domain PF00067	Ferroptosis Mineral absorption Vitamin digestion and absorption Terpenoid backbone biosynthesis Protein Domain (PFAM) Descriptions Cytochrome P450 The domain of the unknown function (DUF4430) Ergosterol biosynthesis ERG4/ERG24 family	7.07 x 10 ⁻¹⁵ 4.42 x 10 ⁻¹⁷ 5.65 x 10 ⁻⁵ 0.0498 FDR <i>p</i> -value
hsa04216 hsa04978 hsa04977 hsa00900 Domain PF00067 PF14478	Ferroptosis Mineral absorption Vitamin digestion and absorption Terpenoid backbone biosynthesis Protein Domain (PFAM) Descriptions Cytochrome P450 The domain of the unknown function (DUF4430)	7.07 x 10 ⁻¹⁵ 4.42 x 10 ⁻¹⁷ 5.65 x 10 ⁻³ 0.0498 FDR <i>p</i> -value 0.0010 0.0010

The p-values, which indicate the significance of the enrichment, were corrected for multiple testing within each category using the Benjamini-Hochberg method generated by STRING. FDR, false discovery rate; GO, gene ontology; HFE, homeostatic iron regulator; KEGG, Kyoto Encyclopedia of Genes and Genome; PFAM, Protein Families database.

These biological mechanisms linked to poor dietary quality that may contribute to obesityassociated anaemia

(Guardiola-Márquez et al., 2022)

Results for Part B: Hub-protein identification based on network topology from the Network Analysis Profiler (NAP) v2.0

Protein Name	Centralisation Degree	Centralisation Betweenness	Eigenvector Centrality +	Subgraph Centrality
TFRC	34	32.54	1.00	3,491,864,896.57
HAMP	34	55.42	0.99	3,391,483,637.82
SLC11A2	30	50.63	0.94	3,076,936,707.97
CP	30	22.37	0.93	3,031,011,069.71
SLC40A1	28	11.40	0.93	3,004,681,454.04
HEPH	28	17.83	0.90	2,832,607,927.84
HMOX1	30	33.47	0.87	2,627,571,495.56
CYBRD1	24	2.33	0.83	2,416,019,436.33
FTH1	24	11.07	0.81	2,278,809,638.63
SLC39A14	22	0.70	0.77	2,070,462,694.19
SLC11A1	22	34.02	0.74	1,892,838,818.12
FTL	20	0.11	0.74	1,887,625,321.89
IL6	34	156.85	0.67	1,585,573,332.11
SLC39A8	16	0.00	0.59	1,215,307,696.66
SLC46A1	16	34.04	0.54	1,007,965,933.55

+ All scores rank from 0.5 -1, with 1 as the highest possible confidence meanwhile, 0.5 might indicate erroneous (for example: false positive) at every second interaction. TFRC, Transferrin receptor protein 1; HAMP, Hepcidin; SLC11A2, Natural resistance-associated macrophage protein 2; CP, Ceruloplasmin; SLC40A1, Solute carrier family 40 member 1; HEPH, Hephaestin; HMOX1, Heme oxygenase 1, CYBRD1, Cytochrome b reductase 1; FTH1, Ferritin heavy chain; SLC39A14, Zinc transporter ZIP14; SLC11A1, Natural resistance-associated macrophage protein 1; FTL, Ferritin light chain; IL6, Interleukin-6; SLC39A8, Zinc transporter ZIP8; SLC46A1, Mfs transporter, pcft/hcp family, solute carrier family 46.

TFRC Transferrin receptor protein 1

TFRC- The most accurate indicator of iron metabolism in obese peopleHAMP- Excess adiposity release IL-6 stimulate HAMP production

```
Sat et al. (2018)
```

HAMP

Hepcidin

These Top 10 identified biomarker had the highest influence of a node in the network with significance direct connections that impact the overall network

Lead to iron shortage in overweight and obese people

80MS International Conference on Obesity & Wetabolism in conjunction with Asia-Oceania Conference on Obesity

In conclusions:

- **1**. The prevalence of haemoglobin concentration was 60.8%, considered severe health problem as stated by the WHO 2020 and most of the participants reported inadequate intake of selected micronutrients.
- 2. The study indicate no association between BMI and selected micronutrients with Hb concentration. In further analysis, revealed that OW contributed 2.77 times higher of getting anaemia compared to other BMI.
- **3.** The bioinformatics-assisted review (BaR) method enhances the detection of obesity-related anemia by combining data on iron, lipids, micronutrient deficiencies, and inflammation biomarkers.

This approach highlights the importance of bioinformatics in nutrition research, facilitating in understanding the causal pathways between diet, body functions, inflammation, and haemoglobin regulation

Insight of these analyses enabling more targeted interventions by elucidating the complex interplay between nutrition, genetics, and health.

80MS International Conference on Obesity & Wetabolism in conjunction with Asia-Oceania Conference on Obesity

Recommendations

Integrate Bioinformatics in Clinical Practice	Focus on Personalized Nutrition	
Promote Interdisciplinary Research	Enhance Nutritional Education and Awareness	

SOMS International Conference on Ubesity & Metabolism in conjunction with **Asia-Oceania Conference on Ubesity**

Empowering Health, Inspiring Change: Practical Solutions for Obesity

Date October 24 (Thu)~26 (Sat), 2024

Venue aT Center, Seoul, Republic of Korea (3F Segyero Room & 4F Changjo Room)

THANK YOU!!!! Q&A Session